Title: | Discrete Weibull Distributions (Type 1 and 3) |
---|---|
Description: | Probability mass function, distribution function, quantile function, random generation and parameter estimation for the type I and III discrete Weibull distributions. |
Authors: | Alessandro Barbiero |
Maintainer: | Alessandro Barbiero <[email protected]> |
License: | GPL |
Version: | 1.1 |
Built: | 2024-12-25 06:59:13 UTC |
Source: | https://github.com/cran/DiscreteWeibull |
Probability mass function, distribution function, quantile function, random generation and parameter estimation for the type I and III discrete Weibull distributions.
In the present version, some modifications have been made on the functions in Edweibull
for the computation of the moments of the type I discrete Weibull distribution.
Package: | DiscreteWeibull |
Type: | Package |
Version: | 1.1 |
Date: | 2015-10-17 |
License: | GPL |
LazyLoad: | yes |
Depends: | Rsolnp |
Alessandro Barbiero <[email protected]>
T. Nakagawa and S. Osaki (1975) The discrete Weibull distribution, IEEE Transactions on Reliability, 24(5), pp. 300-301
D.N.P. Murthy, M. Xie, R Jiang (2004) Weibull models, John Wiley & Sons: Hoboken, New Jersey
W.J. Padgett and J.D. Spurrier (1985) Discrete failure models, IEEE Transactions on Reliability, 34(3), pp. 253-256
H. Rinne (2008) The Weibull Distribution: A Handbook. CRC Press: Boca Raton, Florida
M. S. A. Khan, A. Khalique, and A. M. Abouammoh (1989) On estimating parameters in a discrete Weibull distribution, IEEE Transactions on Reliability, 38(3), pp. 348-350
ddweibull
, estdweibull
, Edweibull
, ddweibull3
, estdweibull3
, Edweibull3
Probability mass function, distribution function, quantile function and random generation for the discrete Weibull distribution with parameters and
ddweibull(x, q, beta, zero = FALSE) pdweibull(x, q, beta, zero = FALSE) qdweibull(p, q, beta, zero = FALSE) rdweibull(n, q, beta, zero = FALSE)
ddweibull(x, q, beta, zero = FALSE) pdweibull(x, q, beta, zero = FALSE) qdweibull(p, q, beta, zero = FALSE) rdweibull(n, q, beta, zero = FALSE)
x |
vector of quantiles |
p |
vector of probabilities |
q |
first parameter |
beta |
second parameter |
zero |
|
n |
sample size |
The discrete Weibull distribution has probability mass function given by ,
, if
zero
=FALSE
; or ,
, if
zero
=TRUE
. The cumulative distribution function is if
zero
=FALSE
; otherwise
ddweibull
gives the probability function, pdweibull
gives the distribution function, qdweibull
gives the quantile function, and rdweibull
generates random values.
Alessandro Barbiero
# Ex.1 x <- 1:10 q <- 0.6 beta <- 0.8 ddweibull(x, q, beta) t <- qdweibull(0.99, q, beta) t pdweibull(t, q, beta) # x <- 0:10 ddweibull(x, q, beta, zero=TRUE) t <- qdweibull(0.99, q, beta, zero=TRUE) t pdweibull(t, q, beta, zero=TRUE) # Ex.2 q <- 0.4 beta <- 0.7 n <- 100 x <- rdweibull(n, q, beta) tabulate(x)/sum(tabulate(x)) y <- 1:round(max(x)) # compare with ddweibull(y, q, beta)
# Ex.1 x <- 1:10 q <- 0.6 beta <- 0.8 ddweibull(x, q, beta) t <- qdweibull(0.99, q, beta) t pdweibull(t, q, beta) # x <- 0:10 ddweibull(x, q, beta, zero=TRUE) t <- qdweibull(0.99, q, beta, zero=TRUE) t pdweibull(t, q, beta, zero=TRUE) # Ex.2 q <- 0.4 beta <- 0.7 n <- 100 x <- rdweibull(n, q, beta) tabulate(x)/sum(tabulate(x)) y <- 1:round(max(x)) # compare with ddweibull(y, q, beta)
Probability mass function, distribution function, quantile function, random generation, and hazard function for the type 3 discrete Weibull distribution with parameters and
ddweibull3(x, c, beta) pdweibull3(x, c, beta) qdweibull3(p, c, beta) rdweibull3(n, c, beta) hdweibull3(x, c, beta)
ddweibull3(x, c, beta) pdweibull3(x, c, beta) qdweibull3(p, c, beta) rdweibull3(n, c, beta) hdweibull3(x, c, beta)
x |
vector of values/quantiles |
p |
vector of probabilities |
c |
first parameter |
beta |
second parameter |
n |
sample size |
The type 3 discrete Weibull distribution is characterized by the following cumulative distribution function: , for
, with
and
.
ddweibull3
gives the probability function, pdweibull3
gives the distribution function, qdweibull3
gives the quantile function, hdweibull3
gives the hazard function, and rdweibull
generates random values.
Alessandro Barbiero
# ddweibull3 x <- 0:10 c <- 0.3 beta <- 0.75 p <- ddweibull3(x, c, beta) p plot(x, p, type="b", ylab=expression(P(X)==x)) # pdweibull3 x <- 0:10 c <- 0.5 beta <- 0.5 p <- pdweibull3(x, c, beta) p cumsum(ddweibull3(x, c, beta)) plot(x, p, type="s", ylab=expression(P(X<=x))) # qdweibull3 p <- c(1:9)/10 p c <- 0.1 beta <- 0.5 qdweibull3(p, c, beta) pdweibull3(10, c, beta) pdweibull3(9, c, beta) # rdweibull3 n <- 20 c <- 0.25 beta <- -0.25 x <- rdweibull3(n, c, beta) x beta <- 0 x <- rdweibull3(n, c, beta) x beta <- 0.25 x <- rdweibull3(n, c, beta) x n <- 1000 x <- rdweibull3(n, c, beta) obs <- c(sum(x==0), tabulate(x)) obs <- obs/sum(obs) theo <- ddweibull3(min(x):max(x), c, beta) barplot(rbind(obs, theo), beside=TRUE, names.arg=min(x):max(x), ylab="relative frequency/probability", col=1:2) legend(24, 0.1, c("observed", "theoretical"), pch=15, col=1:2) #hdweibull3 x <- 0:15 c <- 0.5 hn<-hdweibull3(x, c, beta = -0.5) h0<-hdweibull3(x, c, beta = 0) hp<-hdweibull3(x, c, beta = 0.5) plot(x, hn, type="b", ylim = c(0, 1), ylab="hazard rate") points(x, h0, type = "b", col=2) points(x, hp, type = "b", col=3) legend(11, 0.5, c("beta<0", "beta=0", "beta>0"), col=1:3, pch=21)
# ddweibull3 x <- 0:10 c <- 0.3 beta <- 0.75 p <- ddweibull3(x, c, beta) p plot(x, p, type="b", ylab=expression(P(X)==x)) # pdweibull3 x <- 0:10 c <- 0.5 beta <- 0.5 p <- pdweibull3(x, c, beta) p cumsum(ddweibull3(x, c, beta)) plot(x, p, type="s", ylab=expression(P(X<=x))) # qdweibull3 p <- c(1:9)/10 p c <- 0.1 beta <- 0.5 qdweibull3(p, c, beta) pdweibull3(10, c, beta) pdweibull3(9, c, beta) # rdweibull3 n <- 20 c <- 0.25 beta <- -0.25 x <- rdweibull3(n, c, beta) x beta <- 0 x <- rdweibull3(n, c, beta) x beta <- 0.25 x <- rdweibull3(n, c, beta) x n <- 1000 x <- rdweibull3(n, c, beta) obs <- c(sum(x==0), tabulate(x)) obs <- obs/sum(obs) theo <- ddweibull3(min(x):max(x), c, beta) barplot(rbind(obs, theo), beside=TRUE, names.arg=min(x):max(x), ylab="relative frequency/probability", col=1:2) legend(24, 0.1, c("observed", "theoretical"), pch=15, col=1:2) #hdweibull3 x <- 0:15 c <- 0.5 hn<-hdweibull3(x, c, beta = -0.5) h0<-hdweibull3(x, c, beta = 0) hp<-hdweibull3(x, c, beta = 0.5) plot(x, hn, type="b", ylim = c(0, 1), ylab="hazard rate") points(x, h0, type = "b", col=2) points(x, hp, type = "b", col=3) legend(11, 0.5, c("beta<0", "beta=0", "beta>0"), col=1:3, pch=21)
First and second order moments, variance and expected value of the reciprocal for the type 1 discrete Weibull distribution
Edweibull(q, beta, eps = 1e-04, nmax = 1000, zero = FALSE) E2dweibull(q, beta, eps = 1e-04, nmax = 1000, zero = FALSE) Vdweibull(q, beta, eps = 1e-04, nmax = 1000, zero = FALSE) ERdweibull(q, beta, eps = 1e-04, nmax = 1000)
Edweibull(q, beta, eps = 1e-04, nmax = 1000, zero = FALSE) E2dweibull(q, beta, eps = 1e-04, nmax = 1000, zero = FALSE) Vdweibull(q, beta, eps = 1e-04, nmax = 1000, zero = FALSE) ERdweibull(q, beta, eps = 1e-04, nmax = 1000)
q |
first parameter |
beta |
second parameter |
eps |
error threshold for the numerical computation of the expected value |
nmax |
maximum value considered for the numerical approximate computation of the expected value; |
zero |
|
The expected value is numerically computed considering a truncated support: integer values smaller than or equal to are considered, where
is the inverse of the cumulative distribution function (implemented by the function
qdweibull
). However, if such value is greater than nmax
, the expected value is computed recalling the formula of the expected value of the corresponding continuous Weibull distribution (see the reference), adding 0.5. Similar arguments apply to the other moments.
the (approximate) expected values of the discrete Weibull distribution:
Edweibull
gives the first order moment, E2dweibull
the second order moment, Vdweibull
the variance, ERdweibull
the expected value of the reciprocal (only if zero
is FALSE
)
Alessandro Barbiero
M. S. A. Khan, A. Khalique, and A. M. Abouammoh (1989) On estimating parameters in a discrete Weibull distribution, IEEE Transactions on Reliability, 38(3), pp. 348-350
q <- 0.75 beta <- 1.25 Edweibull(q, beta) E2dweibull(q, beta) Vdweibull(q, beta) ERdweibull(q, beta) # if beta=0.75... beta <- 0.75 Edweibull(q, beta) Edweibull(q, beta, nmax=100) # here above, the approximation through the continuous model intervenes # if beta=1... beta <- 1 Edweibull(q, beta) # which equals... 1/(1-q)
q <- 0.75 beta <- 1.25 Edweibull(q, beta) E2dweibull(q, beta) Vdweibull(q, beta) ERdweibull(q, beta) # if beta=0.75... beta <- 0.75 Edweibull(q, beta) Edweibull(q, beta, nmax=100) # here above, the approximation through the continuous model intervenes # if beta=1... beta <- 1 Edweibull(q, beta) # which equals... 1/(1-q)
First and second order moments for the type 3 discrete Weibull distribution
Edweibull3(c, beta, eps = 1e-04) E2dweibull3(c, beta, eps = 1e-04)
Edweibull3(c, beta, eps = 1e-04) E2dweibull3(c, beta, eps = 1e-04)
c |
first parameter |
beta |
second parameter |
eps |
error threshold for the numerical computation of the expected value |
The expected values are numerically computed considering a truncated support: integer values smaller than or equal to
, where
is the inverse of the cumulative distribution function (implemented by the function
qdweibull3
)
the (approximate) expected values of the discrete Weibull distribution:
Edweibull3
gives the first order moment, E2dweibull3
the second order moment
Alessandro Barbiero
c <- 0.4 beta <- 0.25 Edweibull3(c,beta) c <- 0.4 beta <- -0.75 Edweibull3(c, beta) # may require too much time Edweibull3(c, beta, eps=0.001) # try with a smaller eps->worse approximation c <- rep(0.1, 11) beta <- (0:10)/10 Edweibull3(c, beta) c <- rep(0.5, 11) beta <- (-5:5)/10 Edweibull3(c,beta) # E2dweibull3 c <- 0.4 beta <- 0.25 E2dweibull3(c, beta) c <- rep(0.1, 11) beta <- (0:10)/10 Edweibull3(c, beta) c <- rep(0.8, 11) beta <- (-5:5)/11 E2dweibull3(c, beta)
c <- 0.4 beta <- 0.25 Edweibull3(c,beta) c <- 0.4 beta <- -0.75 Edweibull3(c, beta) # may require too much time Edweibull3(c, beta, eps=0.001) # try with a smaller eps->worse approximation c <- rep(0.1, 11) beta <- (0:10)/10 Edweibull3(c, beta) c <- rep(0.5, 11) beta <- (-5:5)/10 Edweibull3(c,beta) # E2dweibull3 c <- 0.4 beta <- 0.25 E2dweibull3(c, beta) c <- rep(0.1, 11) beta <- (0:10)/10 Edweibull3(c, beta) c <- rep(0.8, 11) beta <- (-5:5)/11 E2dweibull3(c, beta)
Estimation of the parameters of the type 1 discrete Weibull distribution
estdweibull(x, method = "ML", zero = FALSE, eps = 1e-04, nmax=1000)
estdweibull(x, method = "ML", zero = FALSE, eps = 1e-04, nmax=1000)
x |
the vector of sample values |
method |
|
zero |
|
eps |
error threshold for the computation of the moments of the distribution |
nmax |
maximum value considered for the numerical computation of the expected value |
the vector of the estimates of and
Alessandro Barbiero
# Ex1 n <- 10 q <- 0.5 beta <- 0.8 x <- rdweibull(n, q, beta) estdweibull(x, "ML") # maximum likelihood method # it may return some harmless warnings # that depend on the optimization function used in the maximization routine estdweibull(x, "M") # method of moments estdweibull(x, "P") # method of proportion # the estimates provided by the three methods may be quite different # from the true values... and to each other # change the sample size n <- 50 q <- 0.5 beta <- 0.8 x <- rdweibull(n, q, beta) estdweibull(x, "ML") # maximum likelihood method estdweibull(x, "M") # method of moments estdweibull(x, "P") # method of proportion # the estimates should be (on average) closer to the true values # ...and to each other # When the estimation methods fail... # Ex2 # only 1s and 2s x <- c(1,1,1,1,1,1,2,2,2,2) estdweibull(x, "ML") # fails! estdweibull(x, "M") # fails! estdweibull(x, "P") # fails! # Ex3 # no 1s x <- c(2,2,3,4,5,5,5,6,6,8,10) estdweibull(x, "ML") # works estdweibull(x, "M") # works estdweibull(x, "P") # fails!
# Ex1 n <- 10 q <- 0.5 beta <- 0.8 x <- rdweibull(n, q, beta) estdweibull(x, "ML") # maximum likelihood method # it may return some harmless warnings # that depend on the optimization function used in the maximization routine estdweibull(x, "M") # method of moments estdweibull(x, "P") # method of proportion # the estimates provided by the three methods may be quite different # from the true values... and to each other # change the sample size n <- 50 q <- 0.5 beta <- 0.8 x <- rdweibull(n, q, beta) estdweibull(x, "ML") # maximum likelihood method estdweibull(x, "M") # method of moments estdweibull(x, "P") # method of proportion # the estimates should be (on average) closer to the true values # ...and to each other # When the estimation methods fail... # Ex2 # only 1s and 2s x <- c(1,1,1,1,1,1,2,2,2,2) estdweibull(x, "ML") # fails! estdweibull(x, "M") # fails! estdweibull(x, "P") # fails! # Ex3 # no 1s x <- c(2,2,3,4,5,5,5,6,6,8,10) estdweibull(x, "ML") # works estdweibull(x, "M") # works estdweibull(x, "P") # fails!
Estimation of the parameters of the type 3 discrete Weibull distribution
estdweibull3(x, method = "P", eps = 1e-04)
estdweibull3(x, method = "P", eps = 1e-04)
x |
the vector of sample values |
method |
|
eps |
error threshold for the computation of the moments of the distribution |
the vector of the estimates of and
Alessandro Barbiero
# Ex1 x <- c(0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3,3,4,6) estdweibull3(x, "P") estdweibull3(x, "ML") estdweibull3(x, "M") # Ex 2 n <- 20 c <- 1/3 beta <- 2/3 x <- rdweibull3(n, c, beta) estdweibull3(x, "P") par <- estdweibull3(x, "ML") par -loglikedw3(par, x) par <- estdweibull3(x, "M") par lossdw3(par, x) n <- 50 x <- rdweibull3(n, c, beta) estdweibull3(x, "P") estdweibull3(x, "ML") estdweibull3(x, "M") n <- 100 x <- rdweibull3(n, c, beta) estdweibull3(x, "P") estdweibull3(x, "ML") estdweibull3(x, "M") # Ex 3: a piece of simulation study nSim <- 50 n <- 50 c <- 0.2 beta <- 0.7 par <- matrix(0, nSim, 2) for(i in 1:nSim) { x <- rdweibull3(n, c, beta) par[i,] <- estdweibull3(x, "ML") } op <- par(mfrow = c(1,2)) boxplot(par[,1], xlab=expression(hat(c)[ML])) abline(h = c) boxplot(par[,2], xlab=expression(hat(beta)[ML])) abline(h = beta) op <- par()
# Ex1 x <- c(0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3,3,4,6) estdweibull3(x, "P") estdweibull3(x, "ML") estdweibull3(x, "M") # Ex 2 n <- 20 c <- 1/3 beta <- 2/3 x <- rdweibull3(n, c, beta) estdweibull3(x, "P") par <- estdweibull3(x, "ML") par -loglikedw3(par, x) par <- estdweibull3(x, "M") par lossdw3(par, x) n <- 50 x <- rdweibull3(n, c, beta) estdweibull3(x, "P") estdweibull3(x, "ML") estdweibull3(x, "M") n <- 100 x <- rdweibull3(n, c, beta) estdweibull3(x, "P") estdweibull3(x, "ML") estdweibull3(x, "M") # Ex 3: a piece of simulation study nSim <- 50 n <- 50 c <- 0.2 beta <- 0.7 par <- matrix(0, nSim, 2) for(i in 1:nSim) { x <- rdweibull3(n, c, beta) par[i,] <- estdweibull3(x, "ML") } op <- par(mfrow = c(1,2)) boxplot(par[,1], xlab=expression(hat(c)[ML])) abline(h = c) boxplot(par[,2], xlab=expression(hat(beta)[ML])) abline(h = beta) op <- par()
Loglikelihood function (changed in sign) for the type 1 discrete Weibull distribution
loglikedw(par, x, zero = FALSE)
loglikedw(par, x, zero = FALSE)
par |
the vector of parameters, |
x |
the vector of sample values |
zero |
|
the value of the loglikelihood function (changed in sign) for the observed sample x
under the parameters par
Alessandro Barbiero
x <- c(1,1,1,2,2,2,2,2,2,3,4,4,5,6,8) -loglikedw(c(0.8, 1), x) # loglikelihood function for q=0.8 and beta=1 -loglikedw(c(0.4, 2), x) # loglikelihood function for q=0.4 and beta=2 par <- estdweibull(x, "ML")# parameter estimates derived by the ML method par -loglikedw(par, x) # the maximum value of the loglikelihood function
x <- c(1,1,1,2,2,2,2,2,2,3,4,4,5,6,8) -loglikedw(c(0.8, 1), x) # loglikelihood function for q=0.8 and beta=1 -loglikedw(c(0.4, 2), x) # loglikelihood function for q=0.4 and beta=2 par <- estdweibull(x, "ML")# parameter estimates derived by the ML method par -loglikedw(par, x) # the maximum value of the loglikelihood function
Loglikelihood function (changed in sign) for the type 3 discrete Weibull distribution
loglikedw3(par, x)
loglikedw3(par, x)
par |
the vector of parameters, |
x |
the vector of sample values |
the value of the loglikelihood function (changed in sign) for the observed sample x
under the parameters par
Alessandro Barbiero
n <- 20 c <- 1/3 beta <- 2/3 x <- rdweibull3(n, c, beta) par <- estdweibull3(x, "ML") par -loglikedw3(par, x)
n <- 20 c <- 1/3 beta <- 2/3 x <- rdweibull3(n, c, beta) par <- estdweibull3(x, "ML") par -loglikedw3(par, x)
Loss function for the method of moments (type 1 discrete Weibull)
lossdw(par, x, zero = FALSE, eps = 1e-04, nmax=1000)
lossdw(par, x, zero = FALSE, eps = 1e-04, nmax=1000)
par |
vector of parameters |
x |
the vector of sample values |
zero |
|
eps |
error threshold for the numerical computation of the expected value |
nmax |
maximum value considered for the numerical computation of the expected value |
The loss function is given by , where
denotes the expected value,
and
are the first and second order sample moments respectively.
the value of the quadratic loss function
Alessandro Barbiero
x <- c(1,1,1,1,1,2,2,2,3,4) lossdw(c(0.5, 1), x) par <- estdweibull(x, "M") # parameter estimates derived by the method of moments par lossdw(par, x) # the loss is zero using these estimates
x <- c(1,1,1,1,1,2,2,2,3,4) lossdw(c(0.5, 1), x) par <- estdweibull(x, "M") # parameter estimates derived by the method of moments par lossdw(par, x) # the loss is zero using these estimates
Loss function for the method of moments (type 3 discrete Weibull)
lossdw3(par, x, eps = 1e-04)
lossdw3(par, x, eps = 1e-04)
par |
vector of parameters |
x |
the vector of sample values |
eps |
error threshold for the numerical computation of the expected value |
The loss function is given by , where
denotes the expected value,
and
are the first and second order sample moments respectively.
the value of the quadratic loss function
Alessandro Barbiero
n <- 25 c <- 1/3 beta <- 2/3 x <- rdweibull3(n, c, beta) par <- estdweibull3(x, "M") par lossdw3(par, x)
n <- 25 c <- 1/3 beta <- 2/3 x <- rdweibull3(n, c, beta) par <- estdweibull3(x, "M") par lossdw3(par, x)
Observed Fisher information matrix on a sample from the type 1 discrete Weibull distribution
varFisher(x, zero = FALSE)
varFisher(x, zero = FALSE)
x |
a vector of sample values |
zero |
|
a list of two matrices: the observed Fisher information matrix, and its inverse, which contains asymptotic variances and covariances of the maximum likelihood estimators of and
Alessandro Barbiero
x <- rdweibull(100, 2/3, 3/2) estdweibull(x, "ML") IF <- varFisher(x)[[2]] diag(IF) diag(IF)/length(x) # asymptotic variances of the ML estimators directly estimated from the sample
x <- rdweibull(100, 2/3, 3/2) estdweibull(x, "ML") IF <- varFisher(x)[[2]] diag(IF) diag(IF)/length(x) # asymptotic variances of the ML estimators directly estimated from the sample