Title: | Simulation of Discrete Random Variables with Given Correlation Matrix and Marginal Distributions |
---|---|
Description: | A gaussian copula based procedure for generating samples from discrete random variables with prescribed correlation matrix and marginal distributions. |
Authors: | Alessandro Barbiero, Pier Alda Ferrari |
Maintainer: | Alessandro Barbiero <[email protected]> |
License: | GPL |
Version: | 1.4.0 |
Built: | 2024-12-25 06:59:27 UTC |
Source: | https://github.com/cran/GenOrd |
The package implements a procedure for generating samples from a multivariate discrete random variable with pre-specified correlation matrix and marginal distributions. The marginal distributions are linked together through a gaussian copula.
The procedure is developed in two steps: the first step (function ordcont
) sets up the gaussian copula in order to achieve the desired correlation matrix on the target random discrete components; the second step (ordsample
) generates samples from the target variables.
The procedure can handle both Pearson's and Spearman's correlations, and any finite support for the discrete variables.
The intermediate function contord
computes the correlations of the multivariate discrete variable derived from correlated normal variables through discretization.
Function corrcheck
returns the lower and upper bounds of the correlation coefficient of each pair of discrete variables given their marginal distributions, i.e., returns the range of feasible bivariate correlations.
This version has fixed some drawbacks in terminology in the previous version; the only actual change concerns the parameter cormat
in the ordsample
function. Further examples of implementation have been added.
Package: | GenOrd |
Type: | Package |
Version: | 1.4.0 |
Date: | 2015-09-11 |
License: | GPL |
LazyLoad: | yes |
Alessandro Barbiero, Pier Alda Ferrari
Maintainer: Alessandro Barbiero <[email protected]>
P.A. Ferrari, A. Barbiero (2012) Simulating ordinal data, Multivariate Behavioral Research, 47(4), 566-589
A. Barbiero, P.A. Ferrari (2014) Simulation of correlated Poisson variables. Applied Stochastic Models in Business and Industry, doi 10.1002/asmb.2072
contord
, ordcont
, corrcheck
, ordsample
The function computes the correlation matrix of the variables, with given marginal distributions, derived discretizing a
-variate standard normal variable with given correlation matrix
contord(marginal, Sigma, support = list(), Spearman = FALSE)
contord(marginal, Sigma, support = list(), Spearman = FALSE)
marginal |
a list of |
Sigma |
the correlation matrix of the standard multivariate normal variable |
support |
a list of |
Spearman |
if |
the correlation matrix of the discretized variables
Alessandro Barbiero, Pier Alda Ferrari
# consider 4 discrete variables k <- 4 # with these marginal distributions marginal <- list(0.4,c(0.3,0.6), c(0.25,0.5,0.75), c(0.1,0.2,0.8,0.9)) # generated discretizing a multivariate standard normal variable # with correlation matrix Sigma <- matrix(0.5,4,4) diag(Sigma) <- 1 # the resulting correlation matrix for the discrete variables is contord(marginal, Sigma) # note all the correlations are smaller than the original 0.6 # change Sigma, adding a negative correlation Sigma[1,2] <- -0.15 Sigma[2,1] <- Sigma[1,2] Sigma # checking whether Sigma is still positive definite eigen(Sigma)$values # all >0, OK contord(marginal, Sigma)
# consider 4 discrete variables k <- 4 # with these marginal distributions marginal <- list(0.4,c(0.3,0.6), c(0.25,0.5,0.75), c(0.1,0.2,0.8,0.9)) # generated discretizing a multivariate standard normal variable # with correlation matrix Sigma <- matrix(0.5,4,4) diag(Sigma) <- 1 # the resulting correlation matrix for the discrete variables is contord(marginal, Sigma) # note all the correlations are smaller than the original 0.6 # change Sigma, adding a negative correlation Sigma[1,2] <- -0.15 Sigma[2,1] <- Sigma[1,2] Sigma # checking whether Sigma is still positive definite eigen(Sigma)$values # all >0, OK contord(marginal, Sigma)
The function returns the lower and upper bounds of the correlation coefficients of each pair of discrete variables given their marginal distributions, i.e., returns the range of feasible bivariate correlations.
corrcheck(marginal, support = list(), Spearman = FALSE)
corrcheck(marginal, support = list(), Spearman = FALSE)
marginal |
a list of |
support |
a list of |
Spearman |
|
The functions returns a list of two matrices: the former contains the lower bounds, the latter the upper bounds of the feasible pairwise correlations (on the extra-diagonal elements)
Alessandro Barbiero, Pier Alda Ferrari
# four variables k <- 4 # with 2, 3, 4, and 5 categories (Likert scales, by default) kj <- c(2,3,4,5) # and these marginal distributions (set of cumulative probabilities) marginal <- list(0.4, c(0.6,0.9), c(0.1,0.2,0.4), c(0.6,0.7,0.8,0.9)) corrcheck(marginal) # lower and upper bounds for Pearson's rho corrcheck(marginal, Spearman=TRUE) # lower and upper bounds for Spearman's rho # change the supports support <- list(c(0,1), c(1,2,4), c(1,2,3,4), c(0,1,2,5,10)) corrcheck(marginal, support=support) # updated bounds
# four variables k <- 4 # with 2, 3, 4, and 5 categories (Likert scales, by default) kj <- c(2,3,4,5) # and these marginal distributions (set of cumulative probabilities) marginal <- list(0.4, c(0.6,0.9), c(0.1,0.2,0.4), c(0.6,0.7,0.8,0.9)) corrcheck(marginal) # lower and upper bounds for Pearson's rho corrcheck(marginal, Spearman=TRUE) # lower and upper bounds for Spearman's rho # change the supports support <- list(c(0,1), c(1,2,4), c(1,2,3,4), c(0,1,2,5,10)) corrcheck(marginal, support=support) # updated bounds
The function computes the correlation matrix of the -dimensional standard normal r.v. yielding the desired correlation matrix
Sigma
for the -dimensional r.v. with desired marginal distributions
marginal
ordcont(marginal, Sigma, support = list(), Spearman = FALSE, epsilon = 1e-06, maxit = 100)
ordcont(marginal, Sigma, support = list(), Spearman = FALSE, epsilon = 1e-06, maxit = 100)
marginal |
a list of |
Sigma |
the target correlation matrix of the discrete variables |
support |
a list of |
Spearman |
if |
epsilon |
the maximum tolerated error between target and actual correlations |
maxit |
the maximum number of iterations allowed for the algorithm |
a list of five elements
SigmaC |
the correlation matrix of the multivariate standard normal variable |
SigmaO |
the actual correlation matrix of the discretized variables (it should approximately coincide with the target correlation matrix |
Sigma |
the target correlation matrix of the discrete variables |
niter |
a matrix containing the number of iterations performed by the algorithm, one for each pair of variables |
maxerr |
the actual maximum error (the maximum absolute deviation between actual and target correlations of the discrete variables) |
For some choices of marginal
and Sigma
, there may not exist a feasible -variate probability mass function or the algorithm may not provide a feasible correlation matrix
SigmaC
. In this case, the procedure stops and exits with an error.
The value of the maximum tolerated absolute error epsilon
on the elements of the correlation matrix for the target r.v. can be set by the user: a value between 1e-6 and 1e-2 seems to be an acceptable compromise assuring both the precision of the results and the convergence of the algorithm; moreover, a maximum number of iterations can be chosen (maxit
), in order to avoid possible endless loops
Alessandro Barbiero, Pier Alda Ferrari
# consider a 4-dimensional ordinal variable k <- 4 # with different number of categories kj <- c(2,3,4,5) # and uniform marginal distributions marginal <- list(0.5, (1:2)/3, (1:3)/4, (1:4)/5) corrcheck(marginal) # and the following correlation matrix Sigma <- matrix(c(1,0.5,0.4,0.3,0.5,1,0.5,0.4,0.4,0.5,1,0.5,0.3,0.4,0.5,1), 4, 4, byrow=TRUE) Sigma # the correlation matrix of the standard 4-dimensional standard normal # ensuring Sigma is res <- ordcont(marginal, Sigma) res[[1]] # change some marginal distributions marginal <- list(0.3, c(1/3, 2/3), c(1/5, 2/5, 3/5), c(0.1, 0.2, 0.4, 0.6)) corrcheck(marginal) # and notice how the correlation matrix of the multivariate normal changes... res <- ordcont(marginal, Sigma) res[[1]] # change Sigma, adding a negative correlation Sigma[1,2] <- -0.2 Sigma[2,1] <- Sigma[1,2] Sigma # checking whether Sigma is still positive definite eigen(Sigma)$values # all >0, OK res <- ordcont(marginal, Sigma) res[[1]]
# consider a 4-dimensional ordinal variable k <- 4 # with different number of categories kj <- c(2,3,4,5) # and uniform marginal distributions marginal <- list(0.5, (1:2)/3, (1:3)/4, (1:4)/5) corrcheck(marginal) # and the following correlation matrix Sigma <- matrix(c(1,0.5,0.4,0.3,0.5,1,0.5,0.4,0.4,0.5,1,0.5,0.3,0.4,0.5,1), 4, 4, byrow=TRUE) Sigma # the correlation matrix of the standard 4-dimensional standard normal # ensuring Sigma is res <- ordcont(marginal, Sigma) res[[1]] # change some marginal distributions marginal <- list(0.3, c(1/3, 2/3), c(1/5, 2/5, 3/5), c(0.1, 0.2, 0.4, 0.6)) corrcheck(marginal) # and notice how the correlation matrix of the multivariate normal changes... res <- ordcont(marginal, Sigma) res[[1]] # change Sigma, adding a negative correlation Sigma[1,2] <- -0.2 Sigma[2,1] <- Sigma[1,2] Sigma # checking whether Sigma is still positive definite eigen(Sigma)$values # all >0, OK res <- ordcont(marginal, Sigma) res[[1]]
The function draws a sample from a multivariate discrete variable with correlation matrix Sigma
and prescribed marginal distributions marginal
ordsample(n, marginal, Sigma, support = list(), Spearman = FALSE, cormat = "discrete")
ordsample(n, marginal, Sigma, support = list(), Spearman = FALSE, cormat = "discrete")
n |
the sample size |
marginal |
a list of |
Sigma |
the target correlation matrix of the multivariate discrete variable |
support |
a list of |
Spearman |
if |
cormat |
|
a matrix of values drawn from the
-variate discrete r.v. with the desired marginal distributions and correlation matrix
Alessandro Barbiero, Pier Alda Ferrari
# Example 1 # draw a sample from a bivariate ordinal variable # with 4 of categories and asymmetrical marginal distributions # and correlation coefficient 0.6 (to be checked) k <- 2 marginal <- list(c(0.1,0.3,0.6), c(0.4,0.7,0.9)) corrcheck(marginal) # check ok Sigma <- matrix(c(1,0.6,0.6,1),2,2) # sample size 1000 n <- 1000 # generate a sample of size n m <- ordsample(n, marginal, Sigma) head(m) # sample correlation matrix cor(m) # compare it with Sigma # empirical marginal distributions cumsum(table(m[,1]))/n cumsum(table(m[,2]))/n # compare them with the two marginal distributions # Example 1bis # draw a sample from a bivariate ordinal variable # with 4 of categories and asymmetrical marginal distributions # and Spearman correlation coefficient 0.6 (to be checked) k <- 2 marginal <- list(c(0.1,0.3,0.6), c(0.4,0.7,0.9)) corrcheck(marginal, Spearman=TRUE) # check ok Sigma <- matrix(c(1,0.6,0.6,1),2,2) # sample size 1000 n <- 1000 # generate a sample of size n m <- ordsample(n, marginal, Sigma, Spearman=TRUE) head(m) # sample correlation matrix cor(rank(m[,1]),rank(m[,2])) # compare it with Sigma # empirical marginal distributions cumsum(table(m[,1]))/n cumsum(table(m[,2]))/n # compare them with the two marginal distributions # Example 1ter # draw a sample from a bivariate random variable # with binomial marginal distributions (n=3, p=1/3 and n=4, p=2/3) # and Pearson correlation coefficient 0.6 (to be checked) k <- 2 marginal <- list(pbinom(0:2, 3, 1/3),pbinom(0:3, 4, 2/3)) marginal corrcheck(marginal, support=list(0:3, 0:4)) # check ok Sigma <- matrix(c(1,0.6,0.6,1),2,2) # sample size 1000 n <- 1000 # generate a sample of size n m <- ordsample(n, marginal, Sigma, support=list(0:3,0:4)) head(m) # sample correlation matrix cor(m) # compare it with Sigma # empirical marginal distributions cumsum(table(m[,1]))/n cumsum(table(m[,2]))/n # compare them with the two marginal distributions # Example 2 # draw a sample from a 4-dimensional ordinal variable # with different number of categories and uniform marginal distributions # and different correlation coefficients k <- 4 marginal <- list(0.5, c(1/3,2/3), c(1/4,2/4,3/4), c(1/5,2/5,3/5,4/5)) corrcheck(marginal) # select a feasible correlation matrix Sigma <- matrix(c(1,0.5,0.4,0.3,0.5,1,0.5,0.4,0.4,0.5,1,0.5,0.3,0.4,0.5,1), 4, 4, byrow=TRUE) Sigma # sample size 100 n <- 100 # generate a sample of size n set.seed(1) m <- ordsample(n, marginal, Sigma) # sample correlation matrix cor(m) # compare it with Sigma # empirical marginal distribution cumsum(table(m[,4]))/n # compare it with the fourth marginal head(m) # or equivalently... set.seed(1) res <- ordcont(marginal, Sigma) res[[1]] # the intermediate correlation matrix of the multivariate normal m <- ordsample(n, marginal, res[[1]], cormat="continuous") head(m) # Example 3 # simulation of two correlated Poisson r.v. # modification to GenOrd sampling function for Poisson distribution ordsamplep<-function (n, lambda, Sigma) { k <- length(lambda) valori <- mvrnorm(n, rep(0, k), Sigma) for (i in 1:k) { valori[, i] <- qpois(pnorm(valori[,i]), lambda[i]) } return(valori) } # number of variables k <- 2 # Poisson parameters lambda <- c(2, 5) # correlation matrix Sigma <- matrix(0.25, 2, 2) diag(Sigma) <- 1 # sample size n <- 10000 # preliminar stage: support TRUNCATION # required for recovering the correlation matrix # of the standard bivariate normal # truncation error epsilon <- 0.0001 # corresponding maximum value kmax <- qpois(1-epsilon, lambda) # truncated marginals l <- list() for(i in 1:k) { l[[i]] <- 0:kmax[i] } marg <- list() for(i in 1:k) { marg[[i]] <- dpois(0:kmax[i],lambda[i]) marg[[i]][kmax[i]+1] <- 1-sum(marg[[i]][1:(kmax[i])]) } cm <- list() for(i in 1:k) { cm[[i]] <- cumsum(marg[[i]]) cm[[i]] <- cm[[i]][-(kmax[i]+1)] } # check feasibility of correlation matrix RB <- corrcheck(cm, support=l) RL <- RB[[1]] RU <- RB[[2]] Sigma <= RU & Sigma >= RL # OK res <- ordcont(cm, Sigma, support=l) res[[1]] Sigma <- res[[1]] # draw the sample m <- ordsamplep(n, lambda, Sigma) # sample correlation matrix cor(m) head(m) # Example 4 # simulation of 4 correlated binary and Poisson r.v.'s (2+2) # modification to GenOrd sampling function ordsamplep <- function (n, marginal, lambda, Sigma) { k <- length(lambda) valori <- mvrnorm(n, rep(0, k), Sigma) for(i in 1:k) { if(lambda[i]==0) { valori[, i] <- as.integer(cut(valori[, i], breaks = c(min(valori[,i]) - 1, qnorm(marginal[[i]]), max(valori[, i]) + 1))) valori[, i] <- support[[i]][valori[, i]] } else { valori[, i] <- qpois(pnorm(valori[,i]), lambda[i]) } } return(valori) } # number of variables k <- 4 # Poisson parameters (only 3rd and 4th are Poisson) lambda <- c(0, 0, 2, 5) # 1st and 2nd are Bernoulli with p=0.5 marginal <- list() marginal[[1]] <- .5 marginal[[2]] <- .5 marginal[[3]] <- 0 marginal[[4]] <- 0 # support support <- list() support[[1]] <- 0:1 support[[2]] <- 0:1 # correlation matrix Sigma <- matrix(0.25, k, k) diag(Sigma) <- 1 # sample size n <- 10000 # preliminar stage: support TRUNCATION # required for recovering the correlation matrix # of the standard bivariate normal # truncation error epsilon <- 0.0001 # corresponding maximum value kmax <- qpois(1-epsilon, lambda) # truncated marginals for(i in 3:4) { support[[i]] <- 0:kmax[i] } marg <- list() for(i in 3:4) { marg[[i]] <- dpois(0:kmax[i],lambda[i]) marg[[i]][kmax[i]+1] <- 1-sum(marg[[i]][1:(kmax[i])]) } for(i in 3:4) { marginal[[i]] <- cumsum(marg[[i]]) marginal[[i]] <- marginal[[i]][-(kmax[i]+1)] } # check feasibility of correlation matrix RB <- corrcheck(marginal, support=support) RL <- RB[[1]] RU <- RB[[2]] Sigma <= RU & Sigma >= RL # OK # compute correlation matrix of the 4-variate standard normal res <- ordcont(marginal, Sigma, support=support) res[[1]] Sigma <- res[[1]] # draw the sample m <- ordsamplep(n, marginal, lambda, Sigma) # sample correlation matrix cor(m) head(m)
# Example 1 # draw a sample from a bivariate ordinal variable # with 4 of categories and asymmetrical marginal distributions # and correlation coefficient 0.6 (to be checked) k <- 2 marginal <- list(c(0.1,0.3,0.6), c(0.4,0.7,0.9)) corrcheck(marginal) # check ok Sigma <- matrix(c(1,0.6,0.6,1),2,2) # sample size 1000 n <- 1000 # generate a sample of size n m <- ordsample(n, marginal, Sigma) head(m) # sample correlation matrix cor(m) # compare it with Sigma # empirical marginal distributions cumsum(table(m[,1]))/n cumsum(table(m[,2]))/n # compare them with the two marginal distributions # Example 1bis # draw a sample from a bivariate ordinal variable # with 4 of categories and asymmetrical marginal distributions # and Spearman correlation coefficient 0.6 (to be checked) k <- 2 marginal <- list(c(0.1,0.3,0.6), c(0.4,0.7,0.9)) corrcheck(marginal, Spearman=TRUE) # check ok Sigma <- matrix(c(1,0.6,0.6,1),2,2) # sample size 1000 n <- 1000 # generate a sample of size n m <- ordsample(n, marginal, Sigma, Spearman=TRUE) head(m) # sample correlation matrix cor(rank(m[,1]),rank(m[,2])) # compare it with Sigma # empirical marginal distributions cumsum(table(m[,1]))/n cumsum(table(m[,2]))/n # compare them with the two marginal distributions # Example 1ter # draw a sample from a bivariate random variable # with binomial marginal distributions (n=3, p=1/3 and n=4, p=2/3) # and Pearson correlation coefficient 0.6 (to be checked) k <- 2 marginal <- list(pbinom(0:2, 3, 1/3),pbinom(0:3, 4, 2/3)) marginal corrcheck(marginal, support=list(0:3, 0:4)) # check ok Sigma <- matrix(c(1,0.6,0.6,1),2,2) # sample size 1000 n <- 1000 # generate a sample of size n m <- ordsample(n, marginal, Sigma, support=list(0:3,0:4)) head(m) # sample correlation matrix cor(m) # compare it with Sigma # empirical marginal distributions cumsum(table(m[,1]))/n cumsum(table(m[,2]))/n # compare them with the two marginal distributions # Example 2 # draw a sample from a 4-dimensional ordinal variable # with different number of categories and uniform marginal distributions # and different correlation coefficients k <- 4 marginal <- list(0.5, c(1/3,2/3), c(1/4,2/4,3/4), c(1/5,2/5,3/5,4/5)) corrcheck(marginal) # select a feasible correlation matrix Sigma <- matrix(c(1,0.5,0.4,0.3,0.5,1,0.5,0.4,0.4,0.5,1,0.5,0.3,0.4,0.5,1), 4, 4, byrow=TRUE) Sigma # sample size 100 n <- 100 # generate a sample of size n set.seed(1) m <- ordsample(n, marginal, Sigma) # sample correlation matrix cor(m) # compare it with Sigma # empirical marginal distribution cumsum(table(m[,4]))/n # compare it with the fourth marginal head(m) # or equivalently... set.seed(1) res <- ordcont(marginal, Sigma) res[[1]] # the intermediate correlation matrix of the multivariate normal m <- ordsample(n, marginal, res[[1]], cormat="continuous") head(m) # Example 3 # simulation of two correlated Poisson r.v. # modification to GenOrd sampling function for Poisson distribution ordsamplep<-function (n, lambda, Sigma) { k <- length(lambda) valori <- mvrnorm(n, rep(0, k), Sigma) for (i in 1:k) { valori[, i] <- qpois(pnorm(valori[,i]), lambda[i]) } return(valori) } # number of variables k <- 2 # Poisson parameters lambda <- c(2, 5) # correlation matrix Sigma <- matrix(0.25, 2, 2) diag(Sigma) <- 1 # sample size n <- 10000 # preliminar stage: support TRUNCATION # required for recovering the correlation matrix # of the standard bivariate normal # truncation error epsilon <- 0.0001 # corresponding maximum value kmax <- qpois(1-epsilon, lambda) # truncated marginals l <- list() for(i in 1:k) { l[[i]] <- 0:kmax[i] } marg <- list() for(i in 1:k) { marg[[i]] <- dpois(0:kmax[i],lambda[i]) marg[[i]][kmax[i]+1] <- 1-sum(marg[[i]][1:(kmax[i])]) } cm <- list() for(i in 1:k) { cm[[i]] <- cumsum(marg[[i]]) cm[[i]] <- cm[[i]][-(kmax[i]+1)] } # check feasibility of correlation matrix RB <- corrcheck(cm, support=l) RL <- RB[[1]] RU <- RB[[2]] Sigma <= RU & Sigma >= RL # OK res <- ordcont(cm, Sigma, support=l) res[[1]] Sigma <- res[[1]] # draw the sample m <- ordsamplep(n, lambda, Sigma) # sample correlation matrix cor(m) head(m) # Example 4 # simulation of 4 correlated binary and Poisson r.v.'s (2+2) # modification to GenOrd sampling function ordsamplep <- function (n, marginal, lambda, Sigma) { k <- length(lambda) valori <- mvrnorm(n, rep(0, k), Sigma) for(i in 1:k) { if(lambda[i]==0) { valori[, i] <- as.integer(cut(valori[, i], breaks = c(min(valori[,i]) - 1, qnorm(marginal[[i]]), max(valori[, i]) + 1))) valori[, i] <- support[[i]][valori[, i]] } else { valori[, i] <- qpois(pnorm(valori[,i]), lambda[i]) } } return(valori) } # number of variables k <- 4 # Poisson parameters (only 3rd and 4th are Poisson) lambda <- c(0, 0, 2, 5) # 1st and 2nd are Bernoulli with p=0.5 marginal <- list() marginal[[1]] <- .5 marginal[[2]] <- .5 marginal[[3]] <- 0 marginal[[4]] <- 0 # support support <- list() support[[1]] <- 0:1 support[[2]] <- 0:1 # correlation matrix Sigma <- matrix(0.25, k, k) diag(Sigma) <- 1 # sample size n <- 10000 # preliminar stage: support TRUNCATION # required for recovering the correlation matrix # of the standard bivariate normal # truncation error epsilon <- 0.0001 # corresponding maximum value kmax <- qpois(1-epsilon, lambda) # truncated marginals for(i in 3:4) { support[[i]] <- 0:kmax[i] } marg <- list() for(i in 3:4) { marg[[i]] <- dpois(0:kmax[i],lambda[i]) marg[[i]][kmax[i]+1] <- 1-sum(marg[[i]][1:(kmax[i])]) } for(i in 3:4) { marginal[[i]] <- cumsum(marg[[i]]) marginal[[i]] <- marginal[[i]][-(kmax[i]+1)] } # check feasibility of correlation matrix RB <- corrcheck(marginal, support=support) RL <- RB[[1]] RU <- RB[[2]] Sigma <= RU & Sigma >= RL # OK # compute correlation matrix of the 4-variate standard normal res <- ordcont(marginal, Sigma, support=support) res[[1]] Sigma <- res[[1]] # draw the sample m <- ordsamplep(n, marginal, lambda, Sigma) # sample correlation matrix cor(m) head(m)